The Lattice Boltzmann Method for Laminar and Turbulent Channel Flows

Vanja Zecevic, Michael Kirkpatrick and Steven Armfield

Department of Aerospace Mechanical & Mechatronic Engineering The University of Sydney Australia vanja.zecevic@sydney.edu.au

Introduction

- We aim to develop a high performance, highly scalable parallel code for the simulation of fundamental turbulent flows.
- In this work, we use the lattice Boltzmann method to simulate laminar and turbulent channel flows.
- This method allows an efficient implmentation on highly parallel architectures, in this case graphics processing units (GPUs). It is also suitable for more coarse parallelization across multiple processors or GPUs.
- One drawback of the method is that non uniform grids are difficult to implement. We compare a relatively high resolution uniform grid using our code to results published by Moser et. al. [3] using a spectral method with the grid refined at the walls.
- Our results aproach Mosers results as the grid is refined.

LBM - Summary

- Tracks particle populations
 f_i(x, y)
- Time advancement: collision step + streaming step.
- $\sum f_i = \rho$ and $\sum f_i c_{ia} = \rho u_a$ conserved.
- Artificially compressible.
- Review by Benzi, Succi & Vergassola [1].
- Bhatnagar Gross Krook collision operator.

Domain

- Simplest BC's are 'bounce-back'.
- ▶ We use the Guo BC [2].

Hardware & Technologies

Hardware

CPU	intel E8600			
GPU	2 imes GTX295			
RAM	4 GB 1066 MHz DDR3			
PSU	1500 W			
Mobo	GA-X48			
Chipset	intel X48			
PCI-e	2 imes 16 PCI-e 2.0			
Technologies				
OS	Debian Lenny AMD64			
Compiler	gcc, nvcc			
libs	lcudart, pthreads			

Parallel Implementation

- ► GPU uses fine grained data-parallel approach.
- ▶ Many execution units (eg. 240) and even more threads (millions).
- Synchronization over the entire domain cripples performance. [4]
- All communications in LBM are nearest neighbor and data dependence requires two synchronizations per time step.
- Conjugate Gradient solvers require multiple synchronizations and whole domain communications per solver iteration .
- Allows us to get 92% parallel efficiency when scaling from one to four GPU's.

Domain Decomposition

Laminar Channel Flow - Parameters 1

Define the following dimensionless quantities,

The following are constants.

 $I_{char} = \delta$

 $u_{char} = u_{max}$

 $t_{char} = rac{I_{char}}{u_{char}}$

 $\Delta t_{lu} = 1$ $\Delta x_{lu} = 1$ (4) $c_s = \text{speed of sound} = \frac{1}{\sqrt{3}}$ (5)

Laminar Channel Flow - Parameters 2

The following equations can be used as constraints,

$$\Delta t_{d} = \frac{1 \operatorname{lt}}{t_{char}} = \frac{u_{char}}{l_{char}} \cdot (1 \operatorname{lt}) = \frac{u_{max}}{\delta} \cdot (1 \operatorname{lt})$$

$$\Delta x_{d} = \frac{1 \operatorname{lu}}{l_{char}} = \frac{1}{\delta} \cdot (1 \operatorname{lu})$$

$$Ma = \frac{u_{max}}{c_{c}} = \frac{\Delta t_{d}}{c_{c} \Delta x_{d}}$$
(8)

$$Re = \frac{u_{max}\delta}{\nu}$$
(9)

For a laminar channel flow we can estimate:

$$u_{max} = \frac{f\delta^2}{2\nu\rho} \tag{10}$$

Laminar Channel Flow - Parameters 3

- ▶ 8 free variables are Δt_d , Δx_d , δ , Ma, ν , f, u_{max} and Re
- ▶ 5 equations linking these variables.
- Usually we would specify Δt_d, Δx_d and Re, however it is more helpful to specify Ma.

The Mach number plays a similar role to the finite element CFL number.

$$CFL = \frac{\Delta t_{lu} u_{max}}{\Delta x_{lu}} = u_{max} \tag{11}$$

$$Ma = \frac{u_{max}}{c_s} = \frac{CFL}{c_s} = \sqrt{3} \times CFL$$
(12)

We use Ma = 0.1 for our turbulent simulation which is somewhat equivalent to,

$$CFL = \frac{1}{\sqrt{3}} \times Ma = 0.06 \tag{13}$$

Laminar Channel Flow - Results

- Error compared to the Poiseuille profile.
- 2nd order in space and 1st order in Mach number.

Turbulent Channel Flow - Parameters 1

Compared to spectral method of Moser et. al. [3]

$$f\delta = \tau_{w} = \frac{\partial u}{\partial z} \mu \Rightarrow u_{\tau} = \sqrt{\frac{\tau_{w}}{\rho}} = \sqrt{\frac{f\delta}{\rho}}$$
(14)
$$Re_{\tau} = \frac{u_{\tau}\delta}{\nu} = \frac{\delta}{\nu} \sqrt{\frac{f\delta}{\rho}} = 180$$
(15)

	N_y	I_y	N_{x}	I_{x}	N_z	I_z	N _{tot}
LBM	92	2	288	2π	176	π	$4.7 imes10^{6}$
LBM	112	2	352	2π	176	π	$6.9 imes10^{6}$
LBM	132	2	416	2π	212	π	$11.6 imes10^6$
LBM	152	2	480	2π	246	π	$18.0 imes10^6$
Moser	129	2	128	4π	128	$\frac{4}{3}\pi$	$2.1 imes10^{6}$

Turbulent Channel Flow - Parameters 2

- Initial condition = curl noise.
- ▶ D3Q15 had instability and aliasing.

Turbulent Channel Flow - Onset of Turbulence

Vorticity Magnitude (XY planes centered in the Z direction)

Turbulent Channel Flow - Mean Profile

Log law region and viscous sublayer both apparent.

Turbulent Channel Flow - TKE

Height of peaks is a good indicator of agreement.

Turbulent Channel Flow - Energy Spectrum

- Dotted line shows power law expected in inertial range.
- Nyquist frequency in Mosers results has a wave number 32.
- 2π stream-wise dimension appears to be too small with significant energy in the largest wavelength.

Performance

• LBM appears compute bound.

- ► High performance.
- Good scaling.

	Performance	Theoretical
Updates per s	$100 imes10^{6}$	
GFLOPS (DP)	56	276
Gbps	64	4096

Conclusion

- Convergence was verified using laminar flow.
- ► The LBM was successful in simulating a fully turbulent flow.
- Found interesting turbulent channel flow results comparing a fine square grid with a locally refined stretched grid.
- High performance and good parallel scaling.
- Research will continue on to thermal turbulent flows using a Boussinesq approximation.

References

 R. Benzi, S. Succi, and M. Vergassola. The lattice boltzmann-equation - theory and applications. *Phys. Rep.*, 222(3):145–197, Dec 1992.

[2] Z. L. Guo, C. G. Zheng, and B. C. Shi.

An extrapolation method for boundary conditions in lattice boltzmann method.

Phys. Fluids, 14(6):2007–2010, Jun 2002.

 [3] R. D. Moser, J. Kim, and N. N. Mansour. Direct numerical simulation of turbulent channel flow up to Re₇=590. *Phys. Fluids*, 11(4):943–945, Apr 1999.

[4] NVIDIA. NVIDIA CUDA C Programming Best Practices Guide, 2009.